Publications marked with a * respect the mathematical convention of alphabetical author ordering


* 1. Mathematical modeling of the human brain: from magnetic resonance images to finite element simulation.
  K.-A. Mardal, M.E. Rognes, T.B. Thompson and L.-M. Valnes. Springer, 2022. Source access, SpringerLink or Paperback.

Journal Publications

  17. Front propagation and arrival times in networks with application to neurodegenerative diseases
   P. Putra, H. Oliveri, T.B. Thompson and A. Goriely. SIAM J. Appl. Math. (Submitted) 2022. Preprint link.

* 16. A-posteriori error estimation and adaptivity for multiple-network poroelasticity
   E. Eliseussen, M.E. Rognes and T.B. Thompson. ESAIM Math. Model. Numer. Anal. (Submitted) 2021. Preprint link.

  15. Predicting brain atrophy from tau pathology: A summary of clinical findings and their translation into personalized models
   A. Schafer, P. Chaggar, T.B. Thompson, A. Goriely and E. Kuhl. Brain Multiphys. 2, 2021. Manuscript link.

  14. Braiding Braak and Braak: Staging patterns and model selection in network neurodegeneration.
   P. Putra, T.B. Thompson, and A. Goriely. Network Neurosci. 5(4), 2021. Manuscript link.

  13. The role of clearance mechanisms in the kinetics of pathological protein aggregation involved in neurodegenerative diseases.
   T. B. Thompson, G. Meisl, T. Knowles and A. Goriely. J. Chem Phys. 154(12), 2021. Manuscript link.

* 12. Accurate discretization of poroelasticity without Darcy stability.
   K.-A. Mardal, M.E. Rognes and T.B. Thompson. BIT Numer Math. 61, 2021. Manuscript link.

  11. Parameter robust preconditioning by congruence for multiple-network poroelasticity.
   E. Piersanti, J.J. Lee, T.B. Thompson, K.-A. Mardal and M.E. Rognes. SIAM J. Sci Comput. 43(4), 2021. Manuscript link.

  10. Anisotropic diffusion and traveling waves of toxic proteins in neurodegenerative diseases.
   P.G. Kevrikidis, T.B. Thompson and A. Goriely. Phys Rev Lett A. 384(36), 2021. Manuscript link.

  9. Protein-protein interactions in neurodegenerative diseases: a conspiracy theory.
   T.B. Thompson, P. Chaggar, E. Kuhl and A. Goriely. PLoS Comp Biol. 16(10), 2020. Manuscript link.

 * 8. An observation on the uniform preconditioners for the mixed Darcy problem.
   T. Baerland, M. Kuchta, K.-A. Mardal and T.B. Thompson. Numer Meth Part DE. 36(6), 2020. Manuscript link.

  7. An implicit discontinuous Galerkin method for modeling edema in the intestine.
   T.B. Thompson, B. Riviere and M. Knepley J. Math Medic and Biol. 36(4), 2019. Manuscript link.

 * 6. A stable, enriched Galerkin element for the Stokes problem.
   N. Chaabane, V. Girault, B. Riviere and T.B. Thompson. Appl Num Math. 132(4), 2018. Manuscript link.

 * 5. An conservative level set technique for the level set method.
   J.-L. Guermond, M. Quezada de Luna and T.B. Thompson. J. Comp and Appl Math. 321, 2017. Manuscript link.

 * 4. Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations.
   B. Riviere, J. Tan and T.B. Thompson. Comp and Math with Appl. 73(4), 2017. Manuscript link.

 * 3. A discrete commutator theory for the consistency and phase analysis of semi-discrete C0 finite element
   approximations to the linear transport equation.

   T.B. Thompson. J. Comp and Appl Math. 303, 2016. Manuscript link.

 * 2. Validation of an entropy-viscosity model for LES.
   J.-L. Guermond, A. Larios and T.B. Thompson. Direct and Large Eddy Simulation, V.20 p43-48. Springer, 2015. Manuscript link.

 * 1. Coloring the mu transpososome.
   I. Darcy, J. Navarra-Madsen and T.B. Thompson et. al. BMC Bioinformatics. 7(35), 2006. Manuscript link.